If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5+36v^2=95
We move all terms to the left:
-5+36v^2-(95)=0
We add all the numbers together, and all the variables
36v^2-100=0
a = 36; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·36·(-100)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*36}=\frac{-120}{72} =-1+2/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*36}=\frac{120}{72} =1+2/3 $
| x-$448.26=$103.15 | | (4x+2)+(x+112)+(x+6)=180 | | x+51=191 | | 1/2x+12=25 | | 2x^2+2=44 | | (70-4x)=(18x-8) | | 4x2+11x-77=0 | | 2x/15=-4/5 | | (16x-12)=52 | | 22=12x-50 | | 38x=418 | | -4(x-2=12 | | X-1/4(x-2-x/6)=2x+8/3-3 | | 40=20+3x | | 3c+85=-3c+7 | | 1=3/m | | -n=-8+3n | | 6x+10=3x+1 | | (10x+2)+(25x+2)+(9x)=180 | | (12x+1)+(9x+2)+(14x+2)=180 | | 5p−8=4p | | x-4.8=-32.5 | | /2y=34 | | 4^-3/4^n=1/1,024 | | 4y=6+3y | | -4y-6-6y=48 | | 10=2-j | | -12g−6=−13g+2 | | 4(g+7)+1=13 | | 4=2r-10 | | -2(r-20)=4 | | -118=1-6(3n-4) |